Epigenetics and lifestyle

The concept of ‘lifestyle’ includes different factors such as nutrition, behavior, stress, physical activity, working habits, smoking and alcohol consumption. Increasing evidence shows that environmental and lifestyle factors may influence epigenetic mechanisms, such as DNA methylation, histone acetylation and miRNA expression. It has been identified that several lifestyle factors such as diet, obesity, physical activity, tobacco smoking, alcohol consumption, environmental pollutants, psychological stress and working on night shifts might modify epigenetic patterns. Most of the studies conducted so far have been centered on DNA methylation, whereas only a few investigations have studied lifestyle factors in relation to histone modifications and miRNAs. This article reviews current evidence indicating that lifestyle factors might affect human health via epigenetic mechanisms.

KEYWORDS: DNA methylation environmental exposures epigenetics histone modifications lifestyle

The term ‘lifestyle’ is broadly used to describe the “typical way of life or manner of living characteristic of an individual or group” [1]. This concept includes different factors such as diet, behavior, stress, physical activity, working habits, smoking and alcohol consumption. Individual genetic background and environmental factors are intertwined with lifestyle in determining the health status of individuals (Figure 1). Increasing evidence shows that environmental and lifestyle factors may influence epigenetic mechanisms, such as DNA methylation, histone modifications and miRNA expression. Epigenetic mechanisms are flexible genomic parameters that can change genome function under exogenous influence but also provide a mechanism that allows for the stable propagation of gene activity states from one generation of cells to the next [2]. Alterations in epigenetic marks have also been associated with a variety of human diseases, including cancer, cardiovascular, respiratory and neurodegenerative diseases [3]. In this article we will discuss examples of lifestyle factors that have been investigated in relation to possible epigenetic effects, and the implication of lifestyle-related epigenetic changes in disease etiology (Table 1).

Nutrition
As examined in multiple investigations, nutrition might play a role in the modification of epigenetic mechanisms. For example, a diet rich in polyunsaturated fatty acids could generate mutagenic free radicals and oxidative stress [4], which have been directly linked to epigenetic alterations [5,6]. Modulation of gene methylation has been observed in human endothelial cells incubated with arachidonic acid promoting upregulation of proangiogenic mechanisms [7]. Conversely, polyunsaturated fatty acids may have a suppressive function in tumorigenic processes through dampening of inflammation and NF-κB pathway [8]. Moreover, diets rich in fruits and vegetables, which contain many natural antioxidants, can yield anticancer protection [9]. Chen and Xu have extensively reviewed the potential epigenetic effects of several nutritional components, mostly derived from vegetables [10]. For instance, a study in healthy human subjects fed with a single serving of broccoli sprouts showed inhibition of histone deacetylase (HDAC) activity in circulating peripheral blood mononuclear cells 3–6 h after consumption, with concurrent induction of histone H3 and H4 acetylation [11]. An in vitro study on human tumor colon cell lines revealed that high doses of diallyl-disulfide from garlic increased histone H3 and H4 acetylation [12].

Folate & vitamin B12 Intake
Folic acid and vitamin B12 play an important role in DNA metabolism and are required for the synthesis of methionine and S-adenosylmethionine (SAM), the common methyl donor required for the maintenance of methylation patterns in DNA [13]. Methylation reactions could be influenced through the modification of the ratio between SAM and S-adenosylhomocysteine (SAH) [14]. The SAM:SAH ratio is a primary determinant

References

[1] Dietary Folate Intake

[2] Environmental Exposures

[3] Epigenetics

[4] Histone Modifications

[5] Lifestyle

[7] Folate & vitamin B12 Intake
of the methylation capacity because SAM is converted to SAH by methionine adenosyltransferase. Taking into consideration that methionine is regenerated by methylation of homocysteine via the folate and B12-dependent reactions, a folate-deficient diet could interfere with this system \[15\]. The SAM:SAH ratio has been related with DNA methylation patterns. For example, a study conducted in rats examined the maternal folate status and DNA methylation in placenta. A significant positive correlation was found between placental DNA methylation, hepatic and plasma folate levels, and hepatic SAM:SAH ratio \[16\].

Low folate intakes have been associated with risk of colorectal cancer \[17\]. Moreover, folate depletion has been shown to cause lymphocyte DNA hypomethylation in healthy postmenopausal women, an alteration reverted by folate repletion \[18,19\]. A recent study carried out among individuals susceptible to folate deficiency showed that methylation status can be corrected with choline supply at higher-than-recommended doses (500 mg/day) for 12 weeks \[20\]. In the context of the SAM cycle, choline can donate methyl groups to SAM since it is a trimethylated molecule. Folate has also been shown to reverse the dysregulation of miRNA expression associated with hepatocellular carcinogenesis, potentially by restoring dietary methyl donors \[21\]. The growing body of evidence showing that folate intake modulates epigenetic mechanisms has been actively investigated in relation to potential anticarcinogenic properties suggested by epidemiological studies \[22–25\]. Also, investigating epigenetic effects from folate might help understand paradoxical observations, such as those linking very high folate intakes with the development of colorectal carcinoma from adenomatous polyps \[26\].

Polyphenols

Polyphenols are a large family of natural compounds widely distributed in plant foods, that have been shown to modify the activity of
DNA methyltransferases, histone acetylases and HDACs [27,28]. In particular, studies on cancer cells have shown that polyphenols can reverse in in vitro models some of the epigenetic aberrations associated with malignant transformation [29]. Inhibitory effects on DNA methyltransferases have been observed both in vitro and in vivo using different dietary sources of polyphenols [28]. A retrospective analysis associated CDX2 and BMP-2 gene hypermethylation with past low intake of polyphenol sources such as cruciferous vegetables and green tea in patients with primary gastrocarcinoma [30,31]. Green tea contains (-)-epigallocatechin-3-gallate (EGCG), which is an inhibitor of DNA methyltransferases activity. EGCG has been shown to reactivate methylation-silenced genes in cancer cell lines [32,33]. In in vitro experiments with esophageal, prostate, colon and breast cancer cells lines, several CpG islands in various loci were efficiently demethylated by EGCG, thus leading to the expression of previously silenced genes [32–35).

Soy beans are also extremely rich in polyphenols [28]. Soy polyphenols include phytostrogens such as genistein, biochanin A and daidzein [36]. These compounds have also been shown to inhibit DNA methyltransferases and HDACs in cancer cell lines and to revert aberrant CpG island methylation [37]. Li et al. demonstrated in benign (MCF-10AT) and cancer (MCF7) breast cells that all three main DNA methyltransferases (DNMTs; DNMT1, DNMT3a and DNMT3b) were downregulated by genistein [38]. These results might help explain epidemiology data indicating that soy consumption is associated with reduced risk of hormone-related cancers [39].

Selenium

Selenium can epigenetically modulate DNA and histones to activate methylation-silenced genes [40]. Increasing data suggest that selenium may have anticarcinogenic properties through modifications of epigenetic processes in the cell [41–43]. Selenium has been shown to directly inhibit DNMT expression and activity [44,45]. Selenium can also restore the expression of hypermethylated genes, such as GSTP1, APC and CSR1, in human prostate cancer cells by downregulating DNMTs and inhibiting HDAC activity [40]. These genes are known to have anti-cancer activity by protecting against oxidative damage, detoxification of carcinogenic chemicals or tumor suppression [40]. Moreover, in animal models, a selenium-deficient diet has been shown to induce DNA hypomethylation [46,47].

Obesity & physical activity

Overweight, obesity and sedentary lifestyle are established and prevalent risk factors for several diseases, including cancer and cardiovascular disease [48–50]. Because body weight is regulated by genes controlling energy homeostasis, it has been hypothesized that dietary macro-nutrients that affect DNA methylation could contribute to develop obesity through epigenetic mechanisms [51]. Epigenetic biomarkers of obesity, including genes involved in adipogenesis (SOCS1/3), methylation patterns of obesity-related genes (FGF2, PTEN, CDKN1A and ESR1), inflammation genes as well as intermediary metabolism and insulin signaling pathway genes, could help to predict susceptibility and prevent obesity [52].

Emerging evidence indicates that epigenetic mechanisms may be involved in mediating effects of physical activity. In a recent work, physical activity was associated with higher methylation in peripheral blood lymphocytes of long interspersed nucleotide element (LINE)-1 elements, a class of repeated sequences highly repeated in the human genome [53]. Low methylation

Table 1. Lifestyle factors with epigenetic effects.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Example</th>
<th>Studies on</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrition</td>
<td>Folate</td>
<td>Humans</td>
<td>[18,19]</td>
</tr>
<tr>
<td></td>
<td>Phytostrogen</td>
<td>Humans breast cancer benign human cells</td>
<td>[38]</td>
</tr>
<tr>
<td></td>
<td>Polyphenols</td>
<td>Human cancer cells</td>
<td>[37]</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Human cancer cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Human cancer cells</td>
<td>[29,32–35]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Human cancer cells</td>
<td>[30,31]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Human cancer cells</td>
<td>[40]</td>
</tr>
<tr>
<td>Physical activity</td>
<td>Exercise</td>
<td>Humans</td>
<td>[53,57]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Human muscle biopsy tissues</td>
<td>[56]</td>
</tr>
<tr>
<td>Tobacco smoke</td>
<td>Cigarette smoke</td>
<td>Humans lung cancer patients</td>
<td>[66]</td>
</tr>
<tr>
<td></td>
<td>Cigarette smoke condensate</td>
<td>Placentas</td>
<td>[63]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Respiratory epithelia</td>
<td>[68]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rats and mice</td>
<td>[62]</td>
</tr>
<tr>
<td>Alcohol</td>
<td>High alcohol intake</td>
<td>Humans</td>
<td>[73]</td>
</tr>
<tr>
<td></td>
<td>Chronic exposure</td>
<td>Mouse fetal neurons</td>
<td>[74,75]</td>
</tr>
<tr>
<td></td>
<td>Acute exposure</td>
<td>Neural stem cells</td>
<td>[76]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mouse</td>
<td>[77,78]</td>
</tr>
<tr>
<td>Pollutants</td>
<td>Arsenic</td>
<td>Humans</td>
<td>[81–83]</td>
</tr>
<tr>
<td></td>
<td>PAH</td>
<td>Humans</td>
<td>[89,95]</td>
</tr>
<tr>
<td></td>
<td>Black carbon</td>
<td>Humans</td>
<td>[94]</td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td>Humans</td>
<td>[97]</td>
</tr>
<tr>
<td></td>
<td>PAHs</td>
<td>Human lymphoblastoid cells</td>
<td>[103]</td>
</tr>
<tr>
<td></td>
<td>POPs</td>
<td>Human umbilical cord blood</td>
<td>[102]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humans</td>
<td>[103]</td>
</tr>
<tr>
<td>Emotional</td>
<td>Stressful experiences</td>
<td>Rats</td>
<td>[105]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mice</td>
<td>[108]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suicide victims</td>
<td>[109]</td>
</tr>
<tr>
<td>Shiftwork</td>
<td>Working at night</td>
<td>Humans</td>
<td>[115]</td>
</tr>
</tbody>
</table>

in LINE-1 repetitive elements has been associated with inflammatory responses, as well as with chromosomal instability [54]. Interestingly, elderly individuals with high LINE-1 methylation in peripheral blood lymphocytes have been recently shown to have lower incidence and mortality from ischemic heart disease and stroke [55]. Whether the decreased cardiovascular risks associated with LINE-1 methylation reflect beneficial effects from physical activity remains to be determined. In human muscle biopsies following exercise, a global increase in H3K36 acetylation has also been observed [56]. Moreover, a brief exercise has been shown to alter miRNA profiles in circulating neutrophils in humans, including 38 miRNAs involved in inflammatory pathways [57].

Tobacco smoke

Tobacco smoke contains a complex mixture of organic and inorganic chemicals, many of which have carcinogenic, proinflammatory and proatherogenic properties. Individual effects of these components have been examined through different epigenetic studies, but the results are still inconclusive. For example, an *in vitro* chronic toxicity study of normal human fibroblast on benzo[a]pyrene – a prominent carcinogenic polycyclic aromatic hydrocarbon (PAH) found in cigarette smoke – found no aberrant patterns of DNA methylation in genomic regions of relevance for lung cancer [58].

Conversely, cigarette smoke condensate has been shown to decrease the nuclear levels of certain histone modifications such as H4K16 acetylation and H4K20 trimethylation in respiratory epithelial cells [59]. These alterations were similar to changes in histone modifications that can be found in lung cancer tissues and commonly precede aberrant DNA methylation [60,61]. Moreover, histone demethylation in H19 and IGF2 occurred before the DNA hypermethylation-mediated silencing of some tumor suppressor genes such as p16, *MGMT*, DAPK, E-cadherin and Cdh13 in lung carcinogenesis induced by tobacco smoke [62]. Therefore, histone modifications might anticipate DNA methylation changes [60–62].

p53 hypomethylation has been reported in peripheral blood lymphocytes of smoking lung cancer patients [63]. Despite the lack of consistent evidence for *p53* methylation data in human cancer, *p53* hypomethylation has been proposed to be associated with early events in carcinogenesis such as DNA double-strand breaks and chromosomal instability [64,65].

A study that evaluated global DNA methylation from buccal cells of children exposed to prenatal maternal smoking demonstrated hypomethylation of LINE-1 repetitive elements. In the same study, a microarray analysis of 1536 CpG sites identified differential methylation of CpG loci in eight genes. Two of them, *AXL* and *PTPRO*, were validated by pyrosequencing and showed significant increases in methylation [66]. Following findings indicating that miRNAs in human placentas are differentially expressed in association with adverse pregnancy outcomes [67], a recent study found that candidate miRNAs implicated in growth and developmental processes (i.e., miR-16, miR-21 and miR-146a) were significantly downregulated in cigarette smoke-exposed placentas compared with controls [68]. Moreover, downregulation of miRNA expression was also observed in animal experiments when the lungs of mice and rats were exposed to cigarette smoke. In this study, mir-34b, mir-345, mir-421, mir-450b, mir-466 and mir-469 were downregulated at high doses of exposure; however, expression was restored 1 week after smoking cessation [69].

Alcohol consumption

In contrast to PAHs and other carcinogenic molecules found in tobacco smoke and tar, ethyl alcohol is not mutagenic *per se*, but rather acts mainly as a cocarcinogen [70]. A Netherlands cohort study on diet and cancer correlated the intake of folate and alcohol with changes in methylation of tumor suppressor and DNA repair genes (*APC-1A, p14ARF, p16INK4A, hMLH1, O6-MGMT and RASSF1A*) in paraffin-embedded colorectal cancer tissues [71]. Also, this work suggested the association between the intake of other methyl donors such as methionine, vitamin B6 and B12 with an increased frequency of promoter hypermethylation of genes involved in colorectal carcinogenesis [71]. However, a second cohort study did not find any association of folate intake, methionine or alcohol with *MLH1* hypermethylation, a frequent and well-characterized early event in the development of colorectal cancer [72]. A positive association between vitamin B6 intake and tumors showing *MLH1* hypermethylation was found, suggesting vitamin B6 may enhance colorectal cancer risk [72]. Alcohol consumption has also been suggested to modify the association between blood markers of DNA methylation and disease. In a population-based case–control study on a Polish population, Hou *et al.* demonstrated that repetitive-element
hypothesis in blood leukocyte DNA was associated with gastric cancer and that the association between LINE-1 hypomethylation and gastric cancer was stronger among individuals who were current alcohol drinkers [73].

Growing evidence indicates that alcohol may have effects on growth and neuronal development through epigenetic marks. Mouse fetal cortical neurons chronically exposed to ethanol in vitro expressed NR2B gene demethylation, which encodes an ionotropic glutamate receptor possibly involved in certain memory and learning processes [74,75]. Instead, acute exposure to ethanol induced hypermethylation of specific cell cycle genes inhibiting the growth factor-regulated cell cycle progression in monolayer cultures of neural stem cells. Lengthening the time between G1 and S phase was observed when cells were exposed for 48 h [76]. In the mouse strain C57BL/6, alcohol exposure at the early embryo stage altered DNA methylation in embryos with a neural tube defect phenotype [77]. This mouse model showed changes in the expression of genes involved in metabolism and development, such as NLGN3, ELAV12, SOX21 and SIM1. These alterations may contribute to malformations and abnormal fetal development [77]. Subsequently, Zhou et al. found a reduction in expression of neurogenin, Sox5, Bhlh22, Igf1, Efemp1, Tieg and Edil3 in mouse embryo cultures [78]. In this study, the changes in the expression of the genes involved in neural tube development were modulated by changes in DNA methylation patterns [78].

Environmental pollutants
In environmental studies, the flexibility of epigenetic states has generated growing interest in evaluating whether environmental exposures can modify epigenetic states, including DNA methylation and histone modifications [79]. Studies of DNA methylation and histone modification in relation to environmental exposures to potentially toxic chemicals have been examined in detail in a recent review article [80]. In the following sections, we briefly review the main classes of environmental exposures that are most frequently considered epigenetic toxicants.

Arsenic
In a human study from India, a significant DNA hypermethylation of p53 and p16 promoter regions was observed in blood DNA of subjects exposed to toxic arsenic levels compared with controls [81]. In this study, p53 and p16 hypermethylation showed a dose–response relationship with arsenic measured in drinking water. A large body of in vitro and animal studies have shown that arsenic subtracts methyl donors from DNA methylation reactions and induces global DNA hypomethylation [82]. An unexpected finding was recently reported in vivo, as a global dose-dependent hypermethylation of blood DNA was observed in Bangladeshi adults with chronic arsenic exposure. This effect was modified by folate, suggesting that arsenic-induced increases in DNA methylation were dependent on methyl availability [82]. The same group, however, subsequently reported that lower blood DNA methylation was a strongly associated with arsenic-induced skin lesions in a related Bangladeshi population [83].

Air pollution
Exposure to air pollution, particularly to particulate matter (PM), has been associated with increased morbidity and mortality from cardiopulmonary disease, as well as with increased lung cancer risk [84–88]. In a human study, Tarantini et al. recently demonstrated that iNOS promoter methylation decreased in blood samples of fumitory workers with well-characterized exposure to PMo in samples taken at the end of a 4-day work week compared with baseline samples [89]. iNOS demethylation is expected to increase expression and activity of the iNOS protein, an established key player in inflammation and oxidative stress generation, two primary mechanisms that have been suggested to link inhalation of air pollutants to their acute health effects [90–92]. In the same study, long-term exposure to PM2.5 was negatively associated with methylation in both Alu and LINE-1 [89]. Decreased LINE-1 methylation was also observed in association with exposure to black carbon, a marker of traffic particles, on 1097 blood DNA samples from the Normative Aging Study (NAS), a repeated-measure investigation of elderly men in the Boston area (MA, USA). As blood LINE-1 hypomethylation has been found in patients with cancer [93] and cardiovascular disease [94], such changes may reproduce epigenetic processes related to disease development and represent mechanisms by which particulate air pollution affects human health [94]. A recent occupational study has recently examined the effects of exposure to PM and metal components on miRNA expression in 63 workers at an electric-furnace steel plant. miR-222 and miR-21 – two candidate miRNAs related to oxidative stress and inflammation – were overexpressed and positively correlated with the levels of lead exposure and oxidative DNA damage, respectively [95].
Aromatic hydrocarbons & other organic pollutants

High-level exposure to benzene has been associated with increased risk of acute myelogenous leukemia [96], which is characterized by aberrant global hypomethylation and gene-specific hypermethylation/hypomethylation. In a study of gasoline station attendants and traffic police officers, airborne benzene exposure was shown to be associated with a significant reduction in LINE-1 and Alu methylation in peripheral blood DNA [97]. Airborne benzene was also associated with hypermethylation in p15 and hypomethylation of the MAGE-1 cancer-antigen gene [97]. These findings show that benzene exposure at relatively low levels may induce altered DNA methylation, reproducing the aberrant epigenetic patterns found in malignant cells. Also, benzene-associated demethylation of repetitive elements may help explain the epidemiological data linking benzene exposure with increased risk of multiple myeloma [98,99], which also exhibits reduced methylation in Alu and LINE-1 repetitive elements [97]. These human data were recently confirmed by the finding of global hypomethylation in human TK6 lymphoblastoid cells treated for 48 h with hydroquinone, one of the active benzene metabolites [100]. In a study of Polish male nonsmoking coke-oven workers, chronic exposure to PAHs has been shown to modify the methylation status of specific gene promoters (p53, p16, HIC1, and IL-6), as well as of Alu and LINE-1 repetitive elements [101]. Perera et al. published an exploratory study that used methylation-sensitive restriction fingerprinting to analyze umbilical cord white blood cell DNA of 20 children exposed to PAHs. Over 30 DNA sequences were identified whose methylation status was dependent on the level of maternal PAH exposure [102]. Rusiecki et al. evaluated the relationship between plasma concentrations of persistent organic pollutants and blood global DNA methylation, estimated in Alu repeated elements, in 70 Greenlandic Inuit, a population presenting some of the highest reported levels of persistent organic pollutants worldwide. In this article, a significant inverse linear relationship was found between trichlorodichlorophenylethane (DDT), dichlorodiphenyldichlo-roethylene (DDE), β-benzene hexachloride, oxychlordane, α-chlordane, mirex, several polychlorinated biphenyls and the sum of all persistent organic pollutants [103].

Figure 2. Lifestyle factors participating in environment–epigenetic interactions.

EGCG: (-)-epigallocatechin-3-gallate; PAH: Polycyclic aromatic hydrocarbon; PM: Particulate matter; POP: Persistent organic pollutant.
Psychological stress
Earlier studies have indicated that DNA methylation is sensitive to stressful environmental exposures in early development and later in life [104–109]. The glucocorticoid receptor gene promoter was studied in the hippocampus of human suicide victims and controls [109]. Hypermethylation of the glucocorticoid receptor gene was found among suicide victims with a history of abuse in childhood, but not among controls or suicide victims with a negative history of childhood abuse [109]. On the contrary, positive early social experiences might have a mitigating effect on stress responses later in life via epigenetic mechanisms, suggesting a protective role for positive early parental care [110,111]. This is shown in animal studies that have demonstrated that higher maternal care, as reflected in higher licking and grooming of the pups, induces hypomethylation of the glucocorticoid receptor gene in the hippocampus and reduces responses to stress [110].

Shiftwork
Recent advances have revealed that chronobiological regulators may induce chromatin remodeling [112]. The CLOCK gene has been suggested to regulate circadian rhythms through a histone acetyltransferase activity which promotes chromatin-remodeling events implicated in circadian control of gene expression [113,114]. The circadian adjustment may be affected by different factors such as shiftwork. According to several epidemiological studies shiftwork that requires working at night can have a negative impact on the health and wellbeing of workers owing to a mismatch between the endogenous circadian timing system and the environmental synchronizers (e.g., light/dark cycle) [115]. Epigenetic reprogramming events in circadian genes have been proposed as potential regulatory mechanisms of circadian rhythms [116,117]. A recent study on a population of night-shift workers has shown alterations in blood DNA

Executive summary

- **Lifestyle** includes different factors such as nutrition, behavior, stress, physical activity, working habits, smoking and alcohol consumption.
- Environmental and lifestyle factors may influence epigenetic mechanisms.

Nutrition
- Folate and vitamin B12 intake
 - Epidemiological data support the anticarcinogenic property of folate.
 - A protective effect of low folate status against colorectal cancer was reported.
 - Contrasting results suggest that folic acid supplementation could exert a negative effect on already existing lesions.
- Polyphenols
 - Polyphenols can impact DNA methyltransferases, histone acetylases and histone deacetylases inducing reversibility of epigenetic dysregulation.
- Selenium
 - Selenium can impact the DNA methylation status interacting directly with DNA methyltransferases.

Obesity & physical activity
- Macronutrient composition of the diet could help to develop obesity through epigenetic mechanisms.
- Epigenetic mechanisms may be implicated in mediating the effects of physical activity.

Tobacco smoke
- Tobacco smoke effects have been examined through different epigenetic studies, but the results are still under debate.
- Smoking during pregnancy has been associated with an increased risk of developing diseases in fetal or later life, through epigenetic mechanisms.

Alcohol consumption
- Alcohol is an antagonist of folate metabolism and may have effects on DNA methylation.

Environmental pollutants
- Arsenic
 - Hypo/hypermethylation was observed in DNA of blood samples from subjects exposed to toxic level of arsenic.
- Air pollution
 - Particulate air pollution may affect human health through DNA methylation alterations.
- Aromatic hydrocarbons and other organic compounds
 - Repetitive element hypomethylation as well as either hyper- or hypo-methylation of specific genes has been reported for benzene and polycyclic aromatic hydrocarbon exposures.

Psychological stress
- DNA methylation is sensitive to environmental stressful exposures early in development and later in life.

Shiftwork
- An epigenetic reprogramming of circadian genes, changes in Alu repetitive elements methylation and gene-specific methylation of IFN-γ and TNF-α promoters have been observed.
methylations, including changes in Alu repetitive element methylation and gene-specific methylation of inflammatory genes such as IFN-γ and TNF-α [118].

Conclusion & future perspective

In the last few years, several investigations have examined the relationship between epigenetic marks and lifestyle factors, including nutrition, behavior, stress, physical activity, working habits, smoking and alcohol consumption. Although epigenetic modifications are influenced by the environment, most of these changes tend to be re-established at each generation; however, this resetting of epigenetic marks might not happen at some loci in the human genome [119,120]. This leaves open the possibility that environmentally induced epigenetic changes might impact successive generations, a concept referred to as transgenerational epigenetic inheritance [121–124]. Epigenetics is expected to help explain how gene expression is modulated by lifestyle and environmental factors, and to bring a more complete understanding of individual responses to environmental cues and acquired risk factors (Figure 1). Because both epigenetic mechanisms and lifestyle are modifiable, epigeneticists have largely untapped opportunities to determine how epigenetic markers are dependent on lifestyle factors and whether and how much epigenetic mechanisms can be modified after positive or negative lifestyle changes are acquired and sustained (Figure 2). Several of the results linking lifestyle differences to epigenetics are derived from observational studies. Many of the studies cited here should therefore be taken as presumptive until results are confirmed and replicated in different settings.

Financial & competing interests disclosure

This work was funded by New Investigator funding from the HSPH-NIEHS Center for Environmental Health (ES000002) and Lombardy Region Founding (Effetti sulla salute degli inquinanti aerodispersi in regione Lombardia [ESSIA]). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Bibliography

Papers of special note have been highlighted as: * of interest ** of considerable interest

** Describes epigenetic reprogramming as a method of gene regulation through chemoprevention or lifestyle intervention.

* Compilation of the symposium on epigenetics, diet and cancer prevention.

Review on studies related to cancer-protective effects associated with bioactive food components and DNA methylation.

Highlighting the importance of retroelements in cancer and various autoimmune diseases.

* Review that discusses the active demethylation of DNA and the relationship of cancer-associated DNA hypomethylation.

* Proposes epigenetic markers of vascular disease.

** Review about heritable epigenetic modifications triggered by the environment.

** Suggests a hypothesis that links the social environment early in life and long-term epigenetic programming of behavior and responsiveness to stress and health status later in life.

* Description of epigenetic plasticity.

* Review of how environmental and toxicant factors can promote epigenetic transgenerational phenotypes.

www.futuremedicine.com